vibration analysis of an initially pre-stressed rotating carbon nanotube employing differential transform method

Authors

farzad ebrahimi faculty of engineering, imam khomeini international university

gholam reza shaghaghi department of mechanical engineering, university of imam khomeini international, iran

abstract

abstract: in this paper, nonlocal euler–bernoulli beam theory is employed for transverse vibration analysis of an initially pre-stressed size-dependent rotating nanotube. the nonlocal eringen theory takes into account the effect of small size, which enables the present model to become effective in the analysis and design of nanosensors and nanoactuators. governing equations are derived through hamilton’s principle and they are solved applying semi analytical differential transform method (dtm). it is demonstrated that the dtm has high precision and computational efficiency in the vibration analysis of nanotubes. the good agreement between the results of this article and those available in literature validated the presented approach. the detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as preload stress, hub radius, angular velocity and small scale parameter on vibration behaviour rotating nanotubes in detail. it is explicitly shown that the vibration of a spinning nanotube is significantly influenced by these effects. keywords: spinning carbon nanotube; vibration; differential transform method; nonlocal elasticity theory

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Vibration analysis of a rotating closed section composite Timoshenko beam by using differential transform method

This study introduces the Differential Transform Method (DTM) in the analysis of the free vibration response of a rotating closed section composite, Timoshenko beam, which features material coupling between flapwise bending and torsional vibrations due to ply orientation. The governing differential equations of motion are derived using Hamilton’s principle and solved by applying DTM. The natura...

full text

vibration analysis of a rotating closed section composite timoshenko beam by using differential transform method

this study introduces the differential transform method (dtm) to analyse the free vibration response of a rotating, closed section, composite, timoshenko beam which features material coupling between flapwise bending and torsional vibrations due to ply orientation. the governing differential equations of motion are derived using hamilton’s principle and solved by applying dtm. the natural frequ...

full text

Application of Differential Transform Method in Free Vibration Analysis of Rotating Non-Prismatic Beams

Rotating beams are considerably used in different mechanical and aeronautical installations. In this paper, free vibration of non-prismatic rotating Euler-Bernoulli beams is studied. Dynamic stiffness matrix is evaluated by using differential transform method, a powerful numerical tool in solution of ordinary differential equations, for solving the governing equation of motion. The method is ca...

full text

Free vibration analysis of a rotating Timoshenko beam by differential transform method

Purpose – To perform the flapwise bending vibration analysis of a rotating cantilever Timoshenko beam. Design/methodology/approach – Kinetic and potential energy expressions are derived step by step. Hamiltonian approach is used to obtain the governing equations of motion. Differential transform method (DTM) is applied to solve these equations. Findings – It is observed that the rIVu term which...

full text

Mechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber

Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube  in  a  polymer  matrix  and  its surrounding  interphase  is  replaced with an equivalent fiber for  predicting  the  mechanical  properties of  the  carbon  nanotube/polymer composite. The effects of an interphase layer between the nan...

full text

Mechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber

Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube  in  a  polymer  matrix  and  its surrounding  interphase  is  replaced with an equivalent fiber for  predicting  the  mechanical  properties of  the  carbon  nanotube/polymer composite. The effects of an interphase layer between the nan...

full text

My Resources

Save resource for easier access later


Journal title:
international journal of advanced design and manufacturing technology

جلد ۸، شماره ۴، صفحات ۰-۰

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023